kafka-python Documentation
Release 1.4.2

Dana Powers

Mar 11, 2018

Contents

KafkaConsumer 3
KafkaProducer 5
Thread safety 7
Compression 9
Protocol 11
Low-level 13
6.1 Usage 13
6.2 kafka-python API e 15
6.3 Simple APIs (DEPRECATED) o i et s e e e e e e e e e e e e e e 37
6.4 Install L e e e e e e e e e 40
6.5 Tests e e e e e e e e 41
6.6 Compatibility L e e e e e e e e 42
6.7 SUPPOIT o o e e e 42
6.8 LICense e e e 43
6.9 Changelog e e e e e e e 43

kafka-python Documentation, Release 1.4.2

kafka-python is best used with newer brokers (0.9+), but is backwards-compatible with older versions (to 0.8.0).
Some features will only be enabled on newer brokers. For example, fully coordinated consumer groups —i.e., dynamic
partition assignment to multiple consumers in the same group — requires use of 0.9 kafka brokers. Supporting this
feature for earlier broker releases would require writing and maintaining custom leadership election and membership
/ health check code (perhaps using zookeeper or consul). For older brokers, you can achieve something similar by
manually assigning different partitions to each consumer instance with config management tools like chef, ansible,
etc. This approach will work fine, though it does not support rebalancing on failures. See Compatibility for more
details.

Please note that the master branch may contain unreleased features. For release documentation, please see readthedocs
and/or python’s inline help.

>>> pip install kafka-python

Contents 1

compatibility.html

kafka-python Documentation, Release 1.4.2

2 Contents

CHAPTER 1

KafkaConsumer

KafkaConsumer is a high-level message consumer, intended to operate as similarly as possible to the official java
client. Full support for coordinated consumer groups requires use of kafka brokers that support the Group APIs: kafka
v0.9+.

See KafkaConsumer for API and configuration details.

The consumer iterator returns ConsumerRecords, which are simple namedtuples that expose basic message attributes:
topic, partition, offset, key, and value:

>>>
>>>
>>>

from kafka import KafkaConsumer
consumer = KafkaConsumer ('my_favorite_ topic')
for msg in consumer:

print (msg)

>>>
>>>
>>>
>>>

join a consumer group for dynamic partition assignment and offset commits
from kafka import KafkaConsumer
consumer = KafkaConsumer ('my_favorite_ topic', group_id='my_favorite_group')
for msg in consumer:

print (msg)

>>>
>>>
>>>
>>>
>>>

manually assign the partition list for the consumer

from kafka import TopicPartition

consumer = KafkaConsumer (bootstrap_servers='localhost:1234")
consumer.assign ([TopicPartition('foobar', 2)1)

msg = next (consumer)

>>>
>>>
>>>
>>>

Deserialize msgpack-encoded values
consumer = KafkaConsumer (value_deserializer=msgpack.loads)
consumer.subscribe (['msgpackfoo'])
for msg in consumer:
assert isinstance (msg.value, dict)

apidoc/KafkaConsumer.html

kafka-python Documentation, Release 1.4.2

4 Chapter 1. KafkaConsumer

CHAPTER 2

KafkaProducer

KafkaProducer is a high-level, asynchronous message producer. The class is intended to operate as similarly as
possible to the official java client. See KafkaProducer for more details.

>>> from kafka import KafkaProducer
>>> producer = KafkaProducer (bootstrap_servers='localhost:1234")
>>> for _ in range(100):

producer.send('foobar', b'some_message_bytes')

>>> # Block until a single message 1is sent (or timeout)
>>> future = producer.send('foobar', b'another_message')
>>> result = future.get (timeout=60)

>>> # Block until all pending messages are at least put on the network
>>> # NOTE: This does not guarantee delivery or success! It is really
>>> # only useful if you configure internal batching using linger_ms
>>> producer. flush ()

>>> # Use a key for hashed-partitioning
>>> producer.send('foobar', key=b'foo', value=b'bar')

>>> # Serialize json messages

>>> import json

>>> producer = KafkaProducer (value_serializer=lambda v: json.dumps (v).encode ('utf-8"))
>>> producer.send('fizzbuzz', {'foo': 'bar'})

>>> # Serialize string keys
>>> producer = KafkaProducer (key_serializer=str.encode)
>>> producer.send('flipflap', key='ping', value=b'l234")

>>> # Compress messages

>>> producer = KafkaProducer (compression_type='gzip')

>>> for i1 in range (1000):
producer.send('foobar', b'msg

o g1 9

gd' % 1)

apidoc/KafkaProducer.html

kafka-python Documentation, Release 1.4.2

6 Chapter 2. KafkaProducer

CHAPTER 3

Thread safety

The KafkaProducer can be used across threads without issue, unlike the KafkaConsumer which cannot.

While it is possible to use the KafkaConsumer in a thread-local manner, multiprocessing is recommended.

kafka-python Documentation, Release 1.4.2

8 Chapter 3. Thread safety

CHAPTER 4

Compression

kafka-python supports gzip compression/decompression natively. To produce or consume 1z4 compressed messages,
you should install python-1z4 (pip install 1z4). To enable snappy, install python-snappy (also requires snappy library).
See Installation for more information.

install.html#optional-snappy-install

kafka-python Documentation, Release 1.4.2

10 Chapter 4. Compression

CHAPTER B

Protocol

A secondary goal of kafka-python is to provide an easy-to-use protocol layer for interacting with kafka brokers via
the python repl. This is useful for testing, probing, and general experimentation. The protocol support is leveraged to
enable a check_version () method that probes a kafka broker and attempts to identify which version it is running
(0.8.0 to 1.0).

11

kafka-python Documentation, Release 1.4.2

12 Chapter 5. Protocol

CHAPTER O

Low-level

Legacy support is maintained for low-level consumer and producer classes, SimpleConsumer and SimpleProducer.

6.1 Usage

6.1.1 KafkaConsumer

from kafka import KafkaConsumer

To consume latest messages and auto-commit offsets

consumer = KafkaConsumer ('my-topic',
group_id="my-group',
bootstrap_servers=['localhost:9092"])
for message in consumer:
message value and key are raw bytes —- decode if necessary!
e.g., for unicode: ‘message.value.decode ('utf-8"')"
print ("%s:2d:%d: key=¢s value=2s" % (message.topic, message.partition,

message.offset, message.key,
message.value))

consume earliest available messages, don't commit offsets
KafkaConsumer (auto_offset_reset='earliest', enable_auto_commit=False)

consume json messages
KafkaConsumer (value_deserializer=lambda m: json.loads (m.decode('ascii')))

consume msgpack
KafkaConsumer (value_deserializer=msgpack.unpackb)

StopIteration if no message after lsec
KafkaConsumer (consumer_timeout_ms=1000)

Subscribe to a regex topic pattern

13

kafka-python Documentation, Release 1.4.2

consumer = KafkaConsumer ()
consumer.subscribe (pattern="'"awesome.x*")

Use multiple consumers in parallel w/ 0.9 kafka brokers
typically you would run each on a different server / process / CPU
consumerl = KafkaConsumer ('my-topic',
group_id="my-group"',
bootstrap_servers="'my.server.com')
consumer2 = KafkaConsumer ('my-topic',
group_id="my-group"',
bootstrap_servers="'my.server.com')

There are many configuration options for the consumer class. See KafkaConsumer API documentation for more
details.

6.1.2 KafkaProducer

from kafka import KafkaProducer
from kafka.errors import KafkaError

producer = KafkaProducer (bootstrap_servers=['brokerl:1234"'])

Asynchronous by default
future = producer.send('my-topic', b'raw_bytes')

Block for 'synchronous' sends
try:
record_metadata = future.get (timeout=10)
except KafkaError:
Decide what to do if produce request failed...
log.exception ()
pass

Successful result returns assigned partition and offset
print (record_metadata.topic)

print (record_metadata.partition)

print (record_metadata.offset)

produce keyed messages to enable hashed partitioning
producer.send('my-topic', key=b'foo', value=b'bar')

encode objects via msgpack
producer = KafkaProducer (value_serializer=msgpack.dumps)
producer.send('msgpack-topic', {'key': 'value'})

produce json messages
producer = KafkaProducer (value_serializer=lambda m: json.dumps (m) .encode('ascii'))
producer.send('json—-topic', {'key': 'value'})

produce asynchronously
for _ in range (100):
producer.send('my-topic', b'msg'")

block until all async messages are sent
producer. flush ()

14 Chapter 6. Low-level

kafka-python Documentation, Release 1.4.2

configure multiple retries
producer = KafkaProducer (retries=5)

6.2 kafka-python API

6.2.1 KafkaConsumer

class kafka.KafkaConsumer (*topics, **configs)
Consume records from a Kafka cluster.

The consumer will transparently handle the failure of servers in the Kafka cluster, and adapt as topic-partitions
are created or migrate between brokers. It also interacts with the assigned kafka Group Coordinator node to
allow multiple consumers to load balance consumption of topics (requires kafka >= 0.9.0.0).

The consumer is not thread safe and should not be shared across threads.

Parameters *topics (str)— optional list of topics to subscribe to. If not set, call subscribe ()
or assign () before consuming records.

Keyword Arguments

bootstrap_servers — ‘host[:port]’ string (or list of ‘host[:port]’ strings) that the con-
sumer should contact to bootstrap initial cluster metadata. This does not have to be the
full node list. It just needs to have at least one broker that will respond to a Metadata API
Request. Default port is 9092. If no servers are specified, will default to localhost:9092.

client_id (str)— A name for this client. This string is passed in each request to servers
and can be used to identify specific server-side log entries that correspond to this client. Also
submitted to GroupCoordinator for logging with respect to consumer group administration.
Default: ‘kafka-python-{version}’

group_id (str or None)- The name of the consumer group to join for dynamic par-
tition assignment (if enabled), and to use for fetching and committing offsets. If None,
auto-partition assignment (via group coordinator) and offset commits are disabled. Default:
None

key_deserializer (callable) — Any callable that takes a raw message key and
returns a deserialized key.

value_deserializer (callable)— Any callable that takes a raw message value and
returns a deserialized value.

fetch_min_bytes (int)— Minimum amount of data the server should return for a fetch
request, otherwise wait up to fetch_max_wait_ms for more data to accumulate. Default: 1.

fetch_max wait_ms (int)— The maximum amount of time in milliseconds the server
will block before answering the fetch request if there isn’t sufficient data to immediately
satisfy the requirement given by fetch_min_bytes. Default: 500.

fetch_max_bytes (int)— The maximum amount of data the server should return for a
fetch request. This is not an absolute maximum, if the first message in the first non-empty
partition of the fetch is larger than this value, the message will still be returned to ensure that
the consumer can make progress. NOTE: consumer performs fetches to multiple brokers in
parallel so memory usage will depend on the number of brokers containing partitions for the
topic. Supported Kafka version >= 0.10.1.0. Default: 52428800 (50 MB).

max_partition_ fetch bytes (int) — The maximum amount of data per-partition
the server will return. The maximum total memory used for a request = #partitions *

6.2. kafka-python API

15

kafka-python Documentation, Release 1.4.2

max_partition_fetch_bytes. This size must be at least as large as the maximum message
size the server allows or else it is possible for the producer to send messages larger than
the consumer can fetch. If that happens, the consumer can get stuck trying to fetch a large
message on a certain partition. Default: 1048576.

* request_timeout_ms (int)— Client request timeout in milliseconds. Default: 40000.

* retry backoff_ms (int)— Milliseconds to backoff when retrying on errors. Default:
100.

* reconnect_backoff ms (int) — The amount of time in milliseconds to wait before
attempting to reconnect to a given host. Default: 50.

e reconnect_backoff max ms (int)- The maximum amount of time in milliseconds
to wait when reconnecting to a broker that has repeatedly failed to connect. If provided, the
backoff per host will increase exponentially for each consecutive connection failure, up to
this maximum. To avoid connection storms, a randomization factor of 0.2 will be applied to
the backoff resulting in a random range between 20% below and 20% above the computed
value. Default: 1000.

* max_in_ flight_requests_per_ connection (int) — Requests are pipelined to
kafka brokers up to this number of maximum requests per broker connection. Default: 5.

* auto_offset_reset (str) — A policy for resetting offsets on OffsetOutOfRange er-
rors: ‘earliest’ will move to the oldest available message, ‘latest’ will move to the most
recent. Any other value will raise the exception. Default: ‘latest’.

* enable_auto_commit (bool) — If True , the consumer’s offset will be periodically
committed in the background. Default: True.

e auto_commit_interval_ms (int)— Number of milliseconds between automatic off-
set commits, if enable_auto_commit is True. Default: 5000.

e default_offset_commit_callback (callable)— Called as callback(offsets, re-
sponse) response will be either an Exception or an OffsetCommitResponse struct. This
callback can be used to trigger custom actions when a commit request completes.

* check_crecs (bool) — Automatically check the CRC32 of the records consumed. This
ensures no on-the-wire or on-disk corruption to the messages occurred. This check adds
some overhead, so it may be disabled in cases seeking extreme performance. Default: True

* metadata _max_age_ms (int) — The period of time in milliseconds after which we
force a refresh of metadata, even if we haven’t seen any partition leadership changes to
proactively discover any new brokers or partitions. Default: 300000

* partition_assignment_strategy (1ist)— Listof objects to use to distribute par-
tition ownership amongst consumer instances when group management is used. Default:
[RangePartitionAssignor, RoundRobinPartitionAssignor]

* max_poll_records (int)— The maximum number of records returned in a single call
topoll (). Default: 500

* max_poll_interval ms (int) — The maximum delay between invocations of
poll () when using consumer group management. This places an upper bound on the
amount of time that the consumer can be idle before fetching more records. If pol1l () is
not called before expiration of this timeout, then the consumer is considered failed and the
group will rebalance in order to reassign the partitions to another member. Default 300000

* session_timeout_ms (int)— The timeout used to detect failures when using Kafka’s
group management facilities. The consumer sends periodic heartbeats to indicate its liveness
to the broker. If no heartbeats are received by the broker before the expiration of this session

16 Chapter 6. Low-level

kafka-python Documentation, Release 1.4.2

timeout, then the broker will remove this consumer from the group and initiate a rebalance.
Note that the value must be in the allowable range as configured in the broker configuration
by group.min.session.timeout.ms and group.max.session.timeout.ms. Default: 10000

* heartbeat_interval_ms (int) — The expected time in milliseconds between heart-
beats to the consumer coordinator when using Kafka’s group management facilities. Heart-
beats are used to ensure that the consumer’s session stays active and to facilitate rebal-
ancing when new consumers join or leave the group. The value must be set lower than
session_timeout_ms, but typically should be set no higher than 1/3 of that value. It can be
adjusted even lower to control the expected time for normal rebalances. Default: 3000

* receive_buffer_bytes (int) — The size of the TCP receive buffer (SO_RCVBUF)
to use when reading data. Default: None (relies on system defaults). The java client defaults
to 32768.

* send_buffer_bytes (int) — The size of the TCP send buffer (SO_SNDBUF) to use
when sending data. Default: None (relies on system defaults). The java client defaults to
131072.

* socket_options (1ist)— Listof tuple-arguments to socket.setsockopt to apply to bro-
ker connection sockets. Default: [(socket. [IPPROTO_TCP, socket. TCP_NODELAY, 1)]

* consumer_timeout_ms (int) — number of milliseconds to block during message
iteration before raising Stoplteration (i.e., ending the iterator). Default block forever
[float(‘inf”)].

* skip_double_compressed _messages (bool)— A bug in KafkaProducer <= 1.2.4
caused some messages to be corrupted via double-compression. By default, the fetcher
will return these messages as a compressed blob of bytes with a single offset, i.e. how the
message was actually published to the cluster. If you prefer to have the fetcher automatically
detect corrupt messages and skip them, set this option to True. Default: False.

* security_protocol (str) - Protocol used to communicate with brokers. Valid values
are: PLAINTEXT, SSL. Default: PLAINTEXT.

* ssl_context (ssl.SSLContext) — Pre-configured SSLContext for wrapping socket
connections. If provided, all other ssl_* configurations will be ignored. Default: None.

* ssl_check_hostname (bool)— Flag to configure whether ssl handshake should verify
that the certificate matches the brokers hostname. Default: True.

* ssl_cafile (str)—Optional filename of ca file to use in certificate verification. Default:
None.

* ssl_certfile (str) — Optional filename of file in pem format containing the client
certificate, as well as any ca certificates needed to establish the certificate’s authenticity.
Default: None.

* ssl_keyfile (str) — Optional filename containing the client private key. Default:
None.

* ssl_password (str)— Optional password to be used when loading the certificate chain.
Default: None.

* ssl_crlfile (str) — Optional filename containing the CRL to check for certificate
expiration. By default, no CRL check is done. When providing a file, only the leaf certificate
will be checked against this CRL. The CRL can only be checked with Python 3.4+ or 2.7.9+.
Default: None.

* api_version (tuple) — Specify which Kafka API version to use. If set to None, the
client will attempt to infer the broker version by probing various APIs. Different versions

6.2. kafka-python API 17

kafka-python Documentation, Release 1.4.2

enable different functionality.

Examples

(0, 9) enables full group coordination features with automatic partition assignment and
rebalancing,

(0, 8, 2) enables kafka-storage offset commits with manual partition assignment only,

(0, 8, 1) enables zookeeper-storage offset commits with manual partition assignment
only,

(0, 8, 0) enables basic functionality but requires manual partition assignment and offset
management.

Default: None

* api_version_auto_timeout_ms (int) — number of milliseconds to throw a time-
out exception from the constructor when checking the broker api version. Only applies if
api_version set to ‘auto’

* metric_ reporters (list)—A listof classes to use as metrics reporters. Implementing
the AbstractMetricsReporter interface allows plugging in classes that will be notified of new
metric creation. Default: []

* metrics_num_samples (int) — The number of samples maintained to compute met-
rics. Default: 2

* metrics_sample_window_ms (int)— The maximum age in milliseconds of samples
used to compute metrics. Default: 30000

* selector (selectors.BaseSelector) — Provide a specific selector implementa-
tion to use for I/O multiplexing. Default: selectors.DefaultSelector

* exclude_internal_topics (bool)— Whether records from internal topics (such as
offsets) should be exposed to the consumer. If set to True the only way to receive records
from an internal topic is subscribing to it. Requires 0.10+ Default: True

* sasl_mechanism (str) — String picking sasl mechanism when security_protocol is
SASL_PLAINTEXT or SASL_SSL. Currently only PLAIN is supported. Default: None

* sasl_plain_username (str) — Username for sasl PLAIN authentication. Default:
None

* sasl_plain_password (str) — Password for sasl PLAIN authentication. Default:
None

e sasl_kerberos_service name (str) — Service name to include in GSSAPI sasl
mechanism handshake. Default: ‘kafka’

Note: Configuration parameters are described in more detail at https://kafka.apache.org/documentation/
#newconsumerconfigs

assign (partitions)
Manually assign a list of TopicPartitions to this consumer.

Parameters partitions (1ist of TopicPartition)-— Assignment for this instance.

Raises

18 Chapter 6. Low-level

https://kafka.apache.org/documentation/#newconsumerconfigs
https://kafka.apache.org/documentation/#newconsumerconfigs

kafka-python Documentation, Release 1.4.2

* TllegalStateError — If consumer has already called

e subscribe ().

Warning: It is not possible to use both manual partition assignment with assign () and group
assignment with subscribe ().

Note: This interface does not support incremental assignment and will replace the previous assignment
(if there was one).

Note: Manual topic assignment through this method does not use the consumer’s group management
functionality. As such, there will be no rebalance operation triggered when group membership or cluster
and topic metadata change.

assignment ()
Get the TopicPartitions currently assigned to this consumer.

If partitions were directly assigned using assign (), then this will simply return the same partitions that
were previously assigned. If topics were subscribed using subscribe (), then this will give the set of
topic partitions currently assigned to the consumer (which may be None if the assignment hasn’t happened
yet, or if the partitions are in the process of being reassigned).

Returns {TopicPartition, ... }
Return type set

beginning offsets (partitions)
Get the first offset for the given partitions.

This method does not change the current consumer position of the partitions.

Note: This method may block indefinitely if the partition does not exist.

Parameters partitions (1ist)— List of TopicPartition instances to fetch offsets for.
Returns int}‘‘: The earliest available offsets for the given partitions.

Return type ‘‘{TopicPartition

Raises

* UnsupportedVersionError — If the broker does not support looking up the offsets
by timestamp.

* KafkaTimeoutError — If fetch failed in request_timeout_ms.
close (autocommit=True)
Close the consumer, waiting indefinitely for any needed cleanup.

Keyword Arguments autocommit (bool)— If auto-commit is configured for this consumer,
this optional flag causes the consumer to attempt to commit any pending consumed offsets
prior to close. Default: True

6.2.

kafka-python API 19

kafka-python Documentation, Release 1.4.2

commit (offsets=None)
Commit offsets to kafka, blocking until success or error.

This commits offsets only to Kafka. The offsets committed using this API will be used on the first fetch
after every rebalance and also on startup. As such, if you need to store offsets in anything other than Kafka,
this API should not be used. To avoid re-processing the last message read if a consumer is restarted, the
committed offset should be the next message your application should consume, i.e.: last_offset + 1.

Blocks until either the commit succeeds or an unrecoverable error is encountered (in which case it is thrown
to the caller).

Currently only supports kafka-topic offset storage (not zookeeper).

Parameters offsets (dict, optional) — {TopicPartition: OffsetAndMetadata} dict to
commit with the configured group_id. Defaults to currently consumed offsets for all sub-
scribed partitions.

commit_asynec (offsets=None, callback=None)
Commit offsets to kafka asynchronously, optionally firing callback.

This commits offsets only to Kafka. The offsets committed using this API will be used on the first fetch
after every rebalance and also on startup. As such, if you need to store offsets in anything other than Kafka,
this API should not be used. To avoid re-processing the last message read if a consumer is restarted, the
committed offset should be the next message your application should consume, i.e.: last_offset + 1.

This is an asynchronous call and will not block. Any errors encountered are either passed to the callback
(if provided) or discarded.

Parameters

* offsets (dict, optional)— {TopicPartition: OffsetAndMetadata} dict to commit
with the configured group_id. Defaults to currently consumed offsets for all subscribed
partitions.

* callback (callable, optional)— Called as callback(offsets, response) with re-
sponse as either an Exception or an OffsetCommitResponse struct. This callback can be
used to trigger custom actions when a commit request completes.

Returns kafka.future .Future

committed (partition)
Get the last committed offset for the given partition.

This offset will be used as the position for the consumer in the event of a failure.

This call may block to do a remote call if the partition in question isn’t assigned to this consumer or if the
consumer hasn’t yet initialized its cache of committed offsets.

Parameters partition (TopicPartition)— The partition to check.
Returns The last committed offset, or None if there was no prior commit.

end_offsets (partitions)
Get the last offset for the given partitions. The last offset of a partition is the offset of the upcoming
message, i.e. the offset of the last available message + 1.

This method does not change the current consumer position of the partitions.

Note: This method may block indefinitely if the partition does not exist.

Parameters partitions (11ist)— List of TopicPartition instances to fetch offsets for.

20 Chapter 6. Low-level

kafka-python Documentation, Release 1.4.2

Returns int}‘‘: The end offsets for the given partitions.
Return type ¢‘{TopicPartition
Raises

* UnsupportedVersionError — If the broker does not support looking up the offsets
by timestamp.

* KafkaTimeoutError — If fetch failed in request_timeout_ms
highwater (partition)
Last known highwater offset for a partition.

A highwater offset is the offset that will be assigned to the next message that is produced. It may be useful
for calculating lag, by comparing with the reported position. Note that both position and highwater refer
to the next offset — i.e., highwater offset is one greater than the newest available message.

Highwater offsets are returned in FetchResponse messages, so will not be available if no FetchRequests
have been sent for this partition yet.

Parameters partition (TopicPartition)— Partition to check
Returns Offset if available
Return type int or None

metrics (raw=False)
Get metrics on consumer performance.

This is ported from the Java Consumer, for details see: https://kafka.apache.org/documentation/#new_
consumer_monitoring

Warning: This is an unstable interface. It may change in future releases without warning.

offsets_for_ times (timestamps)
Look up the offsets for the given partitions by timestamp. The returned offset for each partition is the ear-
liest offset whose timestamp is greater than or equal to the given timestamp in the corresponding partition.

This is a blocking call. The consumer does not have to be assigned the partitions.

If the message format version in a partition is before 0.10.0, i.e. the messages do not have timestamps,
None will be returned for that partition. None will also be returned for the partition if there are no
messages in it.

Note: This method may block indefinitely if the partition does not exist.

Parameters timestamps (dict)— {TopicPartition: int} mapping from partition
to the timestamp to look up. Unit should be milliseconds since beginning of the epoch
(midnight Jan 1, 1970 (UTC))

Returns OffsetAndTimestamp}‘‘: mapping from partition to the timestamp and offset of the
first message with timestamp greater than or equal to the target timestamp.

Return type ‘‘{TopicPartition
Raises

* ValueError — If the target timestamp is negative

6.2.

kafka-python API 21

https://kafka.apache.org/documentation/#new_consumer_monitoring
https://kafka.apache.org/documentation/#new_consumer_monitoring

kafka-python Documentation, Release 1.4.2

* UnsupportedVersionError — If the broker does not support looking up the offsets
by timestamp.

* KafkaTimeoutError — If fetch failed in request_timeout_ms
partitions_for_ topic (fopic)
Get metadata about the partitions for a given topic.
Parameters topic (str)— Topic to check.
Returns Partition ids
Return type set

pause (*partitions)
Suspend fetching from the requested partitions.

Future calls to poll () will not return any records from these partitions until they have been resumed
using resume ().

Note: This method does not affect partition subscription. In particular, it does not cause a group rebalance
when automatic assignment is used.

Parameters *partitions (TopicPartition)— Partitions to pause.

paused ()
Get the partitions that were previously paused using pause ().

Returns {partition (TopicPartition), ...}
Return type set

poll (timeout_ms=0, max_records=None)
Fetch data from assigned topics / partitions.

Records are fetched and returned in batches by topic-partition. On each poll, consumer will try to use the
last consumed offset as the starting offset and fetch sequentially. The last consumed offset can be manually
set through seek () or automatically set as the last committed offset for the subscribed list of partitions.

Incompatible with iterator interface — use one or the other, not both.
Parameters

* timeout_ms (int, optional) — Milliseconds spent waiting in poll if data is not
available in the buffer. If 0, returns immediately with any records that are available cur-
rently in the buffer, else returns empty. Must not be negative. Default: 0

* max_ records (int, optional) - The maximum number of records returned in a
single call to pol1 (). Default: Inherit value from max_poll_records.

Returns
Topic to list of records since the last fetch for the subscribed list of topics and partitions.
Return type dict

position (partition)
Get the offset of the next record that will be fetched

Parameters partition (TopicPartition)— Partition to check
Returns Offset

Return type int

22 Chapter 6. Low-level

kafka-python Documentation, Release 1.4.2

resume (*partitions)
Resume fetching from the specified (paused) partitions.

Parameters *partitions (TopicPartition)— Partitions to resume.

seek (partition, offset)
Manually specify the fetch offset for a TopicPartition.

Overrides the fetch offsets that the consumer will use on the next pol1 (). If this API is invoked for the
same partition more than once, the latest offset will be used on the next pol1 ().

Note: You may lose data if this API is arbitrarily used in the middle of consumption to reset the fetch
offsets.

Parameters
e partition (TopicPartition)— Partition for seek operation
* offset (int)— Message offset in partition
Raises AssertionError —If offset is not an int >= 0; or if partition is not currently assigned.

seek_to_beginning (*partitions)
Seek to the oldest available offset for partitions.

Parameters xpartitions — Optionally provide specific TopicPartitions, otherwise default to
all assigned partitions.

Raises AssertionError — If any partition is not currently assigned, or if no partitions are
assigned.

seek_to_end (*partitions)
Seek to the most recent available offset for partitions.

Parameters *partitions — Optionally provide specific TopicPartitions, otherwise default to
all assigned partitions.

Raises AssertionError — If any partition is not currently assigned, or if no partitions are
assigned.

subscribe (topics=(), pattern=None, listener=None)
Subscribe to a list of topics, or a topic regex pattern.

Partitions will be dynamically assigned via a group coordinator. Topic subscriptions are not incremental:
this list will replace the current assignment (if there is one).

This method is incompatible with assign ().
Parameters
* topics (1ist)— List of topics for subscription.

* pattern (str) — Pattern to match available topics. You must provide either topics or
pattern, but not both.

* listener (ConsumerRebalanceListener) — Optionally include listener call-
back, which will be called before and after each rebalance operation.

As part of group management, the consumer will keep track of the list of consumers that
belong to a particular group and will trigger a rebalance operation if one of the following
events trigger:

— Number of partitions change for any of the subscribed topics

— Topic is created or deleted

6.2.

kafka-python API 23

kafka-python Documentation, Release 1.4.2

— An existing member of the consumer group dies
— A new member is added to the consumer group

When any of these events are triggered, the provided listener will be invoked first to in-
dicate that the consumer’s assignment has been revoked, and then again when the new
assignment has been received. Note that this listener will immediately override any lis-
tener set in a previous call to subscribe. It is guaranteed, however, that the partitions
revoked/assigned through this interface are from topics subscribed in this call.

Raises
e TllegalStateError —If called after previously calling assign ().
* AssertionError — If neither topics or pattern is provided.
* TypeError — If listener is not a ConsumerRebalanceListener.

subscription ()
Get the current topic subscription.

Returns {topic, ...}
Return type set

topics ()
Get all topics the user is authorized to view.

Returns topics
Return type set

unsubscribe ()
Unsubscribe from all topics and clear all assigned partitions.

6.2.2 KafkaProducer

class kafka.KafkaProducer (**configs)

A Kafka client that publishes records to the Kafka cluster.

The producer is thread safe and sharing a single producer instance across threads will generally be faster than
having multiple instances.

The producer consists of a pool of buffer space that holds records that haven’t yet been transmitted to the server
as well as a background I/O thread that is responsible for turning these records into requests and transmitting
them to the cluster.

send () is asynchronous. When called it adds the record to a buffer of pending record sends and immediately
returns. This allows the producer to batch together individual records for efficiency.

The ‘acks’ config controls the criteria under which requests are considered complete. The “all” setting will
result in blocking on the full commit of the record, the slowest but most durable setting.

If the request fails, the producer can automatically retry, unless ‘retries’ is configured to 0. Enabling retries
also opens up the possibility of duplicates (see the documentation on message delivery semantics for details:
http://katka.apache.org/documentation.html#semantics).

The producer maintains buffers of unsent records for each partition. These buffers are of a size specified by the
‘batch_size’ config. Making this larger can result in more batching, but requires more memory (since we will
generally have one of these buffers for each active partition).

By default a buffer is available to send immediately even if there is additional unused space in the buffer.
However if you want to reduce the number of requests you can set ‘linger_ms’ to something greater than 0.

24

Chapter 6. Low-level

http://kafka.apache.org/documentation.html#semantics

kafka-python Documentation, Release 1.4.2

This will instruct the producer to wait up to that number of milliseconds before sending a request in hope that
more records will arrive to fill up the same batch. This is analogous to Nagle’s algorithm in TCP. Note that
records that arrive close together in time will generally batch together even with linger_ms=0 so under heavy
load batching will occur regardless of the linger configuration; however setting this to something larger than 0
can lead to fewer, more efficient requests when not under maximal load at the cost of a small amount of latency.

The buffer_memory controls the total amount of memory available to the producer for buffering. If records are
sent faster than they can be transmitted to the server then this buffer space will be exhausted. When the buffer
space is exhausted additional send calls will block.

The key_serializer and value_serializer instruct how to turn the key and value objects the user provides into
bytes.

Keyword Arguments

* bootstrap_servers — ‘host[:port]’ string (or list of ‘host[:port]’ strings) that the pro-
ducer should contact to bootstrap initial cluster metadata. This does not have to be the full
node list. It just needs to have at least one broker that will respond to a Metadata API
Request. Default port is 9092. If no servers are specified, will default to localhost:9092.

* client_id (str)—aname for this client. This string is passed in each request to servers
and can be used to identify specific server-side log entries that correspond to this client.
Default: ‘kafka-python-producer-#" (appended with a unique number per instance)

* key_serializer (callable) — used to convert user-supplied keys to bytes If not
None, called as f(key), should return bytes. Default: None.

* value_serializer (callable) — used to convert user-supplied message values to
bytes. If not None, called as f(value), should return bytes. Default: None.

* acks (0, 1, 'all') — The number of acknowledgments the producer requires the
leader to have received before considering a request complete. This controls the durabil-
ity of records that are sent. The following settings are common:

0: Producer will not wait for any acknowledgment from the server. The message will
immediately be added to the socket buffer and considered sent. No guarantee can be
made that the server has received the record in this case, and the retries configuration will
not take effect (as the client won’t generally know of any failures). The offset given back
for each record will always be set to -1.

1: Wait for leader to write the record to its local log only. Broker will respond without
awaiting full acknowledgement from all followers. In this case should the leader fail
immediately after acknowledging the record but before the followers have replicated it
then the record will be lost.

all: Wait for the full set of in-sync replicas to write the record. This guarantees that the
record will not be lost as long as at least one in-sync replica remains alive. This is the
strongest available guarantee.

If unset, defaults to acks=1.

* compression_type (str) — The compression type for all data generated by the pro-
ducer. Valid values are ‘gzip’, ‘snappy’, ‘1z4’, or None. Compression is of full batches
of data, so the efficacy of batching will also impact the compression ratio (more batching
means better compression). Default: None.

* retries (int) — Setting a value greater than zero will cause the client to resend any
record whose send fails with a potentially transient error. Note that this retry is no different
than if the client resent the record upon receiving the error. Allowing retries without setting
max_in_flight_requests_per_connection to 1 will potentially change the ordering of records

6.2. kafka-python API 25

kafka-python Documentation, Release 1.4.2

because if two batches are sent to a single partition, and the first fails and is retried but the
second succeeds, then the records in the second batch may appear first. Default: 0.

* batch_size (int)—Requests sent to brokers will contain multiple batches, one for each
partition with data available to be sent. A small batch size will make batching less common
and may reduce throughput (a batch size of zero will disable batching entirely). Default:
16384

* linger_ms (int) — The producer groups together any records that arrive in between re-
quest transmissions into a single batched request. Normally this occurs only under load
when records arrive faster than they can be sent out. However in some circumstances the
client may want to reduce the number of requests even under moderate load. This setting ac-
complishes this by adding a small amount of artificial delay; that is, rather than immediately
sending out a record the producer will wait for up to the given delay to allow other records
to be sent so that the sends can be batched together. This can be thought of as analogous
to Nagle’s algorithm in TCP. This